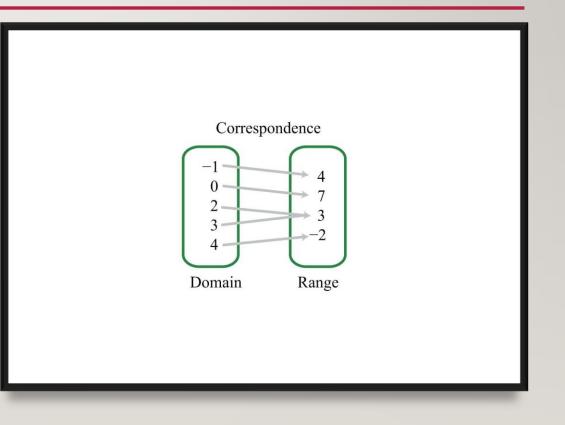
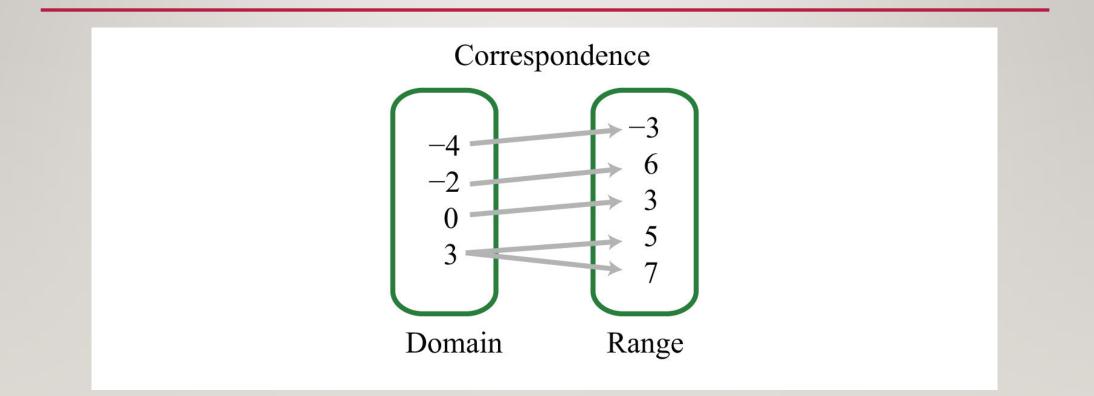
INTRO TO FUNCTIONS

WHAT IS A FUNCTION?

- Function is a "relation" between the sets that associates one input to a single output.
- The input values are the "domain" of a function
- The output values are the "range" of a function

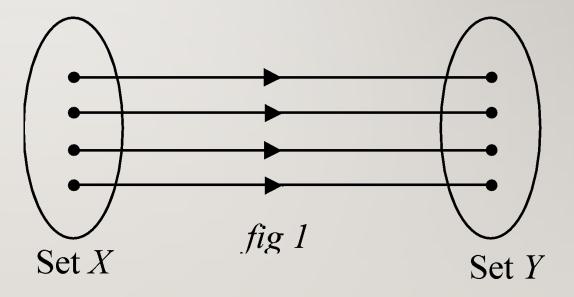


IS THIS A FUNCTION?

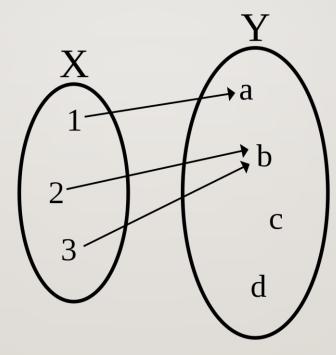


ONE-TO-ONE FUNCTION

- It is a FUNCTION
- Each input has a different output



IS THIS A ONE-TO-ONE FUNCTION?



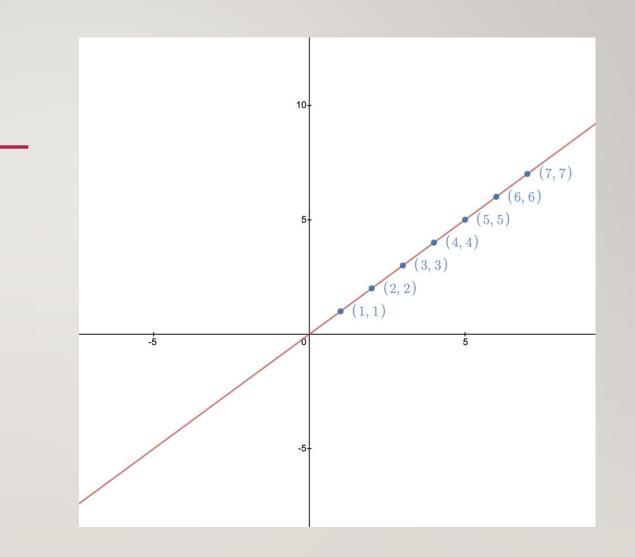
PLOTTING FUNCTIONS

y = x

x	у
1	1
2	2
3	3
4	4
5	5
6	6
7	7

$$y = x$$

- Passes "vertical line test"
 - It's a function
- Passes "horizontal line test"
 - It's a one-to-one function



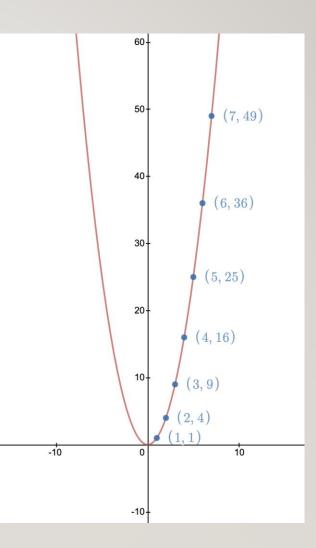
PLOTTING FUNCTIONS

$$y = x^2$$

x	у
1	2
2	4
3	9
4	16
5	25
6	36
7	49

$$y = x^2$$

- Passes "vertical line test"
 - It's a function
- DOESN'T pass "horizontal line test"
 - It's NOT a one-to-one



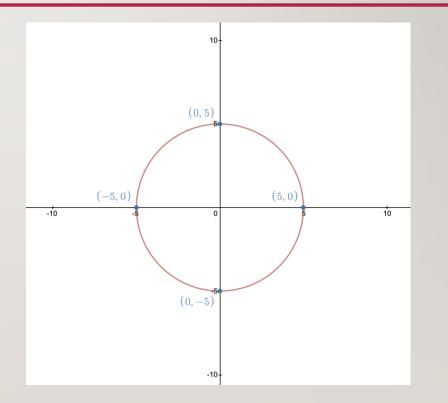
PLOTTING FUNCTIONS

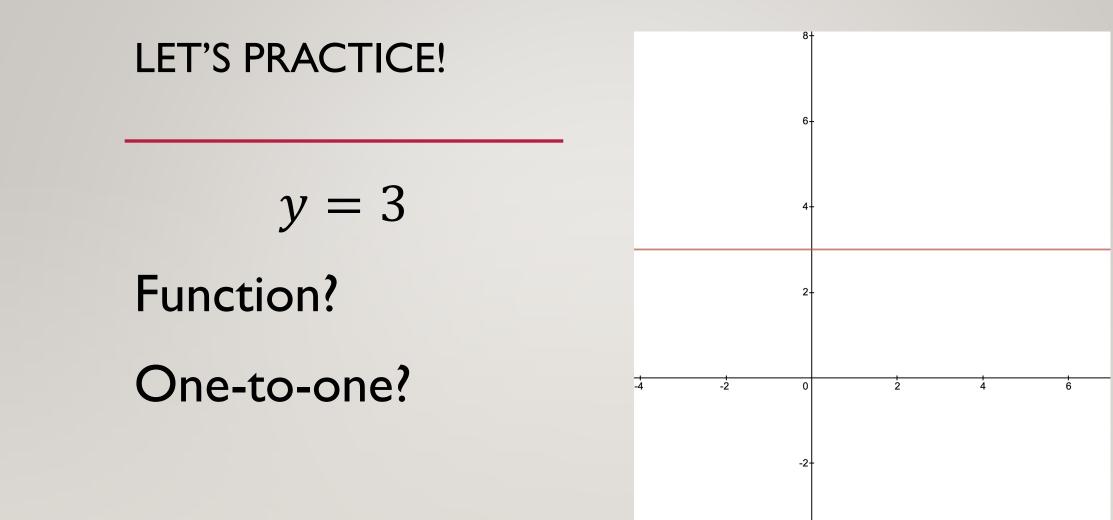
 $x^2 + y^2 = 25$

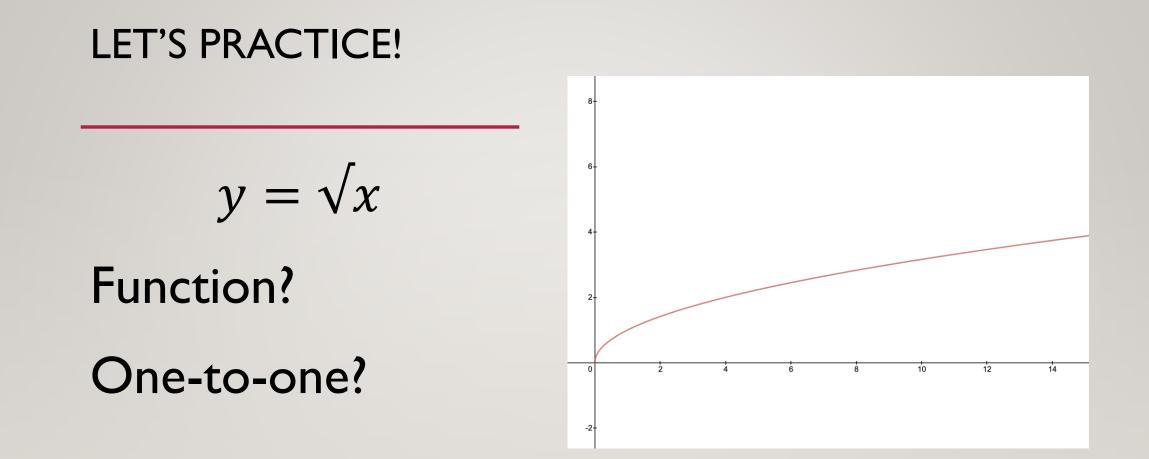
x	у
0	5
0	-5
-5	0
5	0

$$x^2 + y^2 = 25$$

- DOESN'T pass "vertical line test"
 - It's NOT a function
- DOESN'T pass "horizontal line test"
 - It's NOT a one-to-one



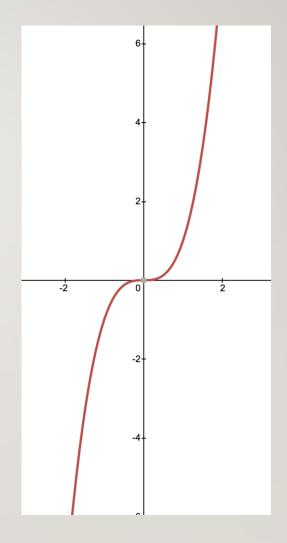




$$y = x^3$$

Function?

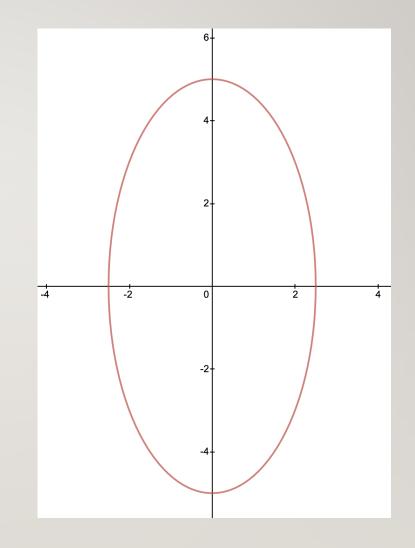
One-to-one?

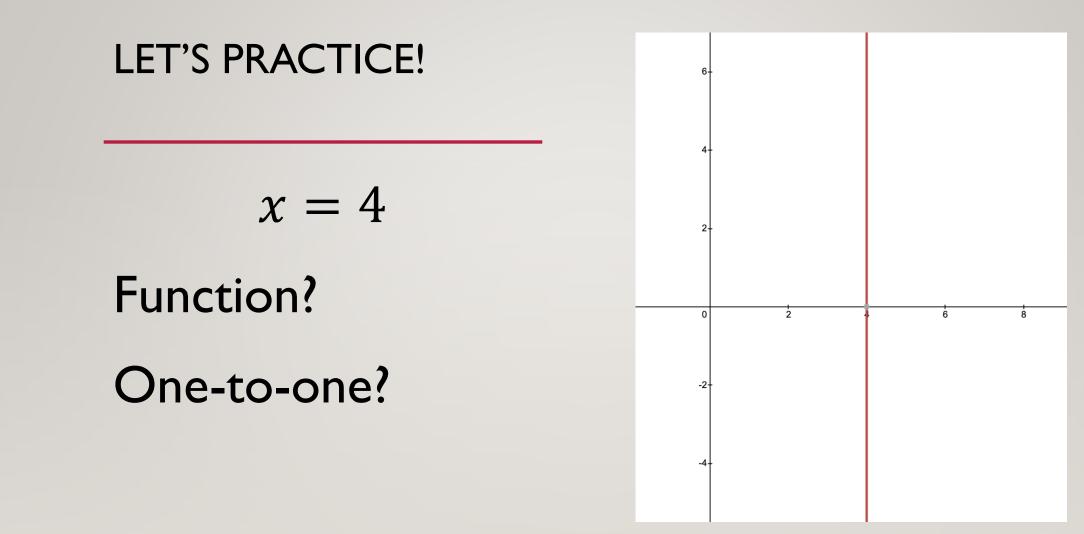


$$4x^2 + y^2 = 25$$

Function?

One-to-one?

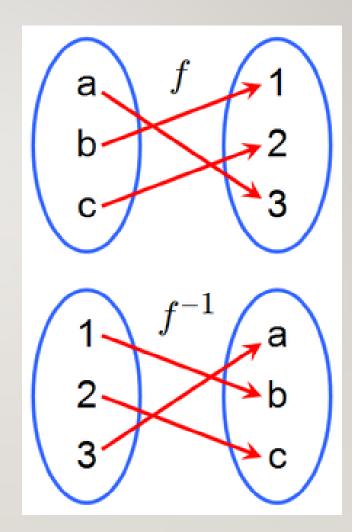




INVERSE FUNCTIONS

WHAT IS AN INVERSE FUNCTION?

- Inverse function f⁻¹ is a "reverse" of the original function f
 - f has an input x and output y
 - f^{-1} has an input y and output x
- The domain of f becomes the range and the range of f becomes the domain for f^{-1}



FINDING INVERSE FUNCTIONS

- Switch x and y
- Solve for *y*
- Replace y with $f^{-1}(x)$

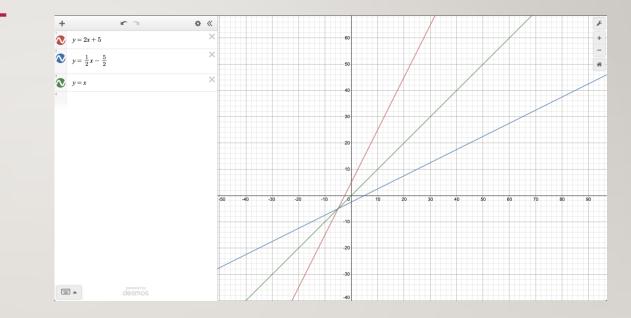
FINDING INVERSE FUNCTIONS

- y = 2x + 5
- x = 2y + 5
- x 5 = 2y
- $y = \frac{1}{2}x \frac{5}{2}$

•
$$f^{-1}(x) = \frac{1}{2}x - \frac{5}{2}$$

FINDING INVERSE FUNCTIONS

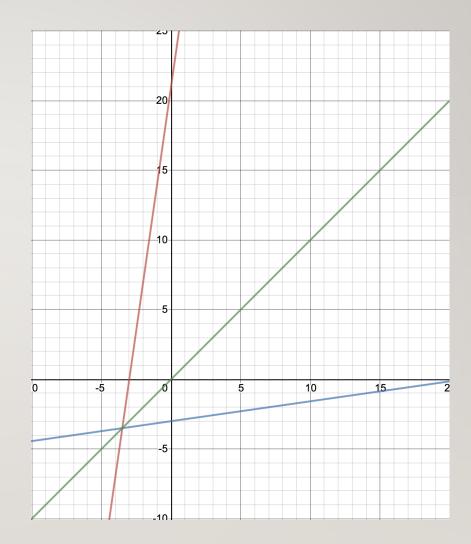
 Can also reflect the original function over y = x

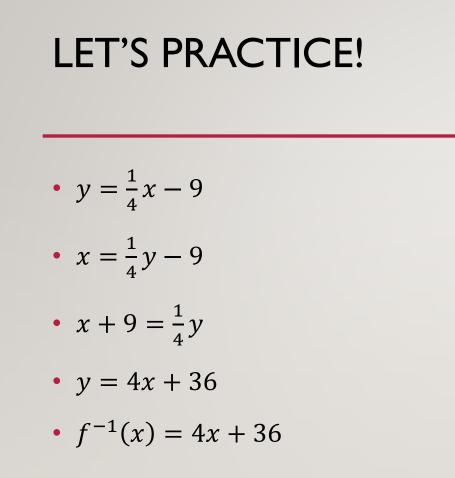


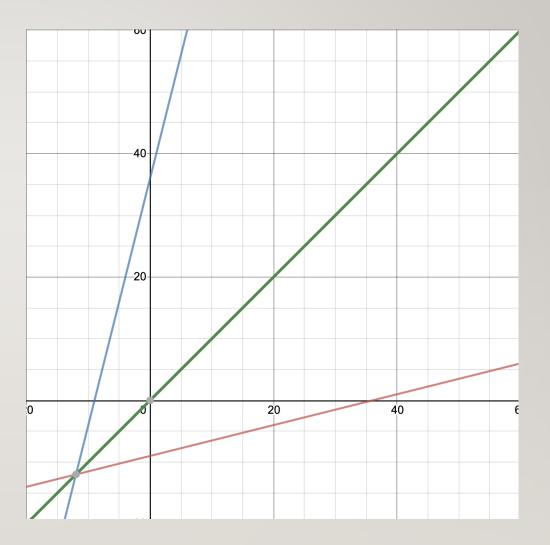
Find the inverse of the followings:

y = 7x + 21
y = ¹/₄x - 9
y = e^x
y = 3^x + 8
y = x²

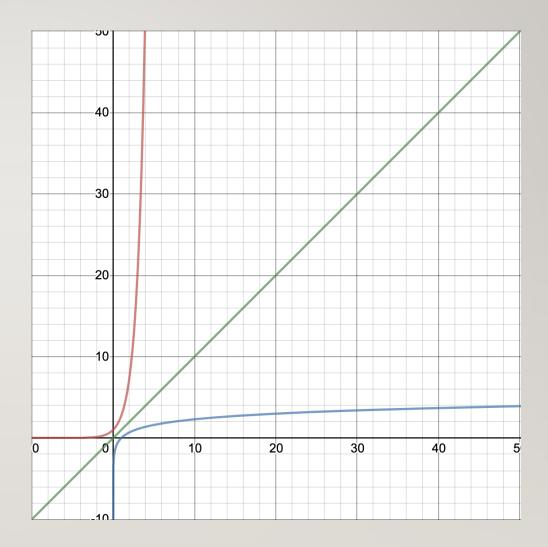
- y = 7x + 21
- x = 7y + 21
- x 21 = 7y
- $y = \frac{1}{7}x 3$
- $f^{-1}(x) = \frac{1}{7}x 3$



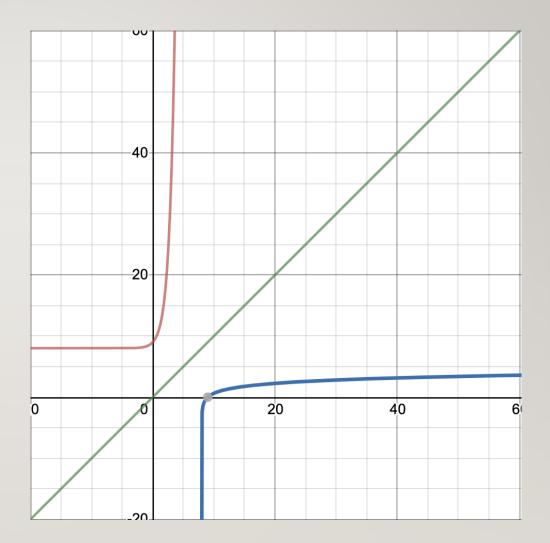




- $y = e^x$
- $x = e^y$
- $y = \ln x$
- $f^{-1}(x) = \ln x$

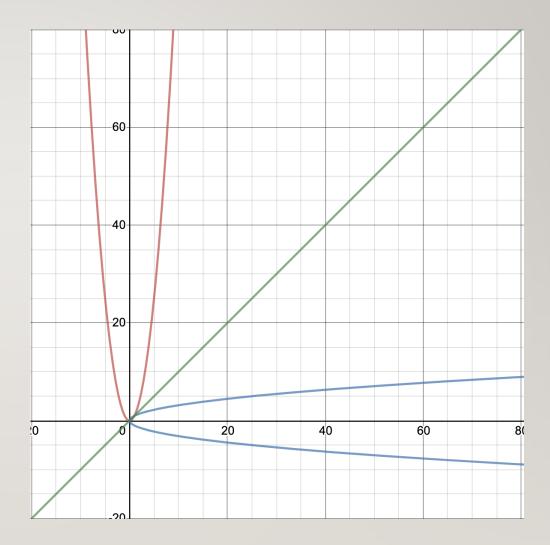


- $y = 3^x + 8$
- $x = 3^y + 8$
- $x 8 = 3^{y}$
- $y = \log_3(x 8)$
- $f^{-1}(x) = \log_3(x-8)$



LET'S PRACTICE! • $y = x^2$ • $x = y^2$ • $y = \pm \sqrt{x}$

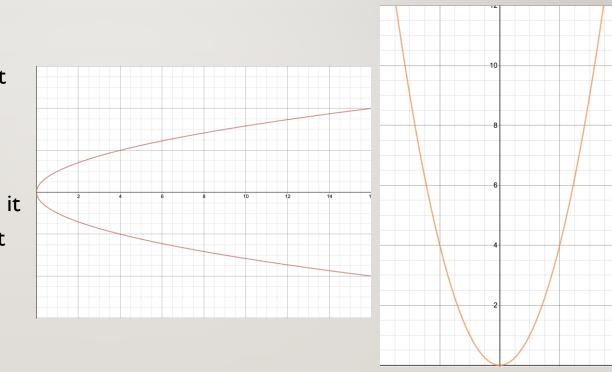
•
$$f^{-1}(x) = \pm \sqrt{x}$$



IS INVERSE A FUNCTION?

• $f^{-1}(x) = \pm \sqrt{x}$

- This is not a function because it doesn't pass vertical line test
- $f(x) = x^2$
 - This is not one-to-one because it doesn't pass horizontal line test



CONDITIONS FOR THE INVERSE TO BE A FUNCTION

 The domain and range is switching. So, for its inverse to be a function(passes a vertical line test), the original function has to be one-to-one (passes a horizontal line test)

Determine if the inverses of the followings are functions:

- $y = 4x^3$
- $4x^2 + y^2 = 100$
- y = x
- $y = e^x$
- $y = x^6$

TRANSFORMATION OF FUNCTIONS

TYPES OF TRANSFORMATIONS

- Translation
 - The curve is shifted
- Reflection
 - The curve is flipped
- Dilation
 - The curve gets smaller/bigger

QUADRATIC FUNCTIONS

- Standard form
 - $y = ax^2 + bx + c$
- Vertex form
 - $y = a(x-h)^2 + k$
 - $(h,k) \Rightarrow vertex$
- Vertex form is better to identify the shape of the function, therefore the transformation of the function.

$(x-6)^{2} + 4 EXAMPLES OF TRANSLATION$ $(HORIZONTAL) (k+2)^{2} + 4 (HORIZONTAL)$

\$ ≪

-14

12

Horizontal translation to the right by 4 units

• $y = (x - 2)^2 + 4$

 $(x-2)^2 + 4$

- The vertex has to change from (2,4) to (6,4)
- $y = (x 6)^2 + 4$

Horizontal translation to the left by 4 units

• $y = (x - 2)^2 + 4$

• The vertex has to change from (2,4) to (-2,4)

• $y = (x + 2)^2 + 4$

$\sum_{x=2}^{2} (x-2)^{2} + 8 EXAMPLES OF TRANSLATION$ (VERTICAL) (VERTICAL)

\$ ≪

Vertical translation up by 4 units

- $y = (x 2)^2 + 4$
 - The vertex has to change from (2,4) to (2,8)
 - $y = (x 2)^2 + 8$

Vertical translation down by 4 units

• $y = (x - 2)^2 + 4$

• The vertex has to change from (2,4) to (2,0)

-2

0

10

6

8

12

• $y = (x - 2)^2$

$\infty = (x-2)^2$ EXAMPLES OF REFLECTION

\$ ≪

Reflection over x-axis

• $y = (x - 2)^2 + 4$

 $(x-2)^2+4$

 $(-x-2)^2+4$

- The y values are changing signs
- $y = -(x-2)^2 4$

Reflection over y-axis

- $y = (x 2)^2 + 4$
 - The *x* values are changing signs

-40

• $y = (-x - 2)^2 + 4$

-50

-40-

10

-10

10

20

30

40

50

60

AN EXAMPLE OF DILATION (HORIZONTAL)

X

70

-60

-50

40

30

0

-10

10

20

30

40

Horizontal dilation by a scale factor 2

• $y = x^2$

 x^2

3 $4x^2$

 $\frac{1}{4}x^2$

• The graph is stretching horizontally by 2

•
$$y = \left(\frac{1}{2}x\right)^2 = \frac{1}{4}x^2$$

Horizontal dilation by a scale factor $\frac{1}{2}$

• $y = x^2$

• The graph is shrinking horizontally by $\frac{1}{2}$

-60

-50

-30

-40

-20

-10

•
$$y = (2x)^2 = 4x$$

+

AN EXAMPLE OF DILATION (VERTICAL)

\$ ≪

80

-70

-60-

50

40

-30

-20

0

-10

10

20

30

40

Vertical dilation by a scale factor 2

• $y = x^2$

K C

• The graph is stretching vertically by 2

• $y = 2x^2$

Vertical dilation by a scale factor $\frac{1}{2}$

• $y = x^2$

• The graph is shrinking vertically by $\frac{1}{2}$

-60

-50

-40

-30

-20

• $y = \frac{1}{2}x^2$