KNN by Yunsu Han

KNN Algorithm

K-Nearest Neighbors (KNN) algorithm is a supervised learning that counts “K” nearest
neighbors near the initial value.

Import Packages

Before we run the code, we must import some necessary packages. Those packages are
NumPy, pandas (do simple tasks such as creating arrays, sorting tables out, etc.), matplotlib
(draws plots such as scatterplots), and KNN from sklearn.

[1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Load Dataset
We need some datasets to perform this algorithm! | brought some data from a website
called iris.

[2]: url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"

Assign colum names to the dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']

Read dataset to pandas dataframe
dataset = pd.read_csv(url, names=names)

Let’s take a slight peek at the data.
[3]: dataset.head()

[3]: sepal-length sepal-width petal-length petal-width Class
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

Preprocessing
The next step is to split our dataset into its attributes and labels. The X variable contains the
first four columns of the dataset (i.e. attributes) while y contains the labels.
[5]: X
y

dataset.iloc[:, :-1].values
dataset.iloc[:, 4].values

Splitting Train and Test Dataset
In order to avoid overfitting, we need to find a good ratio of train dataset: test dataset. This
way, the algorithm is tested on unseen data, and so on.

[6]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

Scaling
Before making predictions, it is always good to scale the dataset so that we can evaluate
every single one of them.

[7]: from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)

X train = scaler.transform(X train)
X test = scaler.transform(X test)

Training and Predictions
The next step is to train the model and predict in which class the data is included. We set
the k value as 5 and fit the model.

[8]: from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)

[8]: KNeighborsClassifier(algorithm="'auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=5, p=2,
weights="uniform')

[10]: y_pred = classifier.predict(X_test)

Evaluating the Algorithm

The final step is to evaluate the accuracy of the model. We use the confusion matrix in order
to prevent one-sided predictions. This confusion matrix shows not only accuracy but also
recall, support, and fl-score.

[11]: from sklearn.metrics import classification_report, confusion_matrix
print (confusion_matrix(y_test, y_pred))

print(classification_report(y_test, y_pred))

[([11 O Ol
[0 8 0]
[0 1 10]]

Iris-setosa
Iris-versicolor
Iris-virginica

accuracy
macro avg
weighted avg

precision

1.00
0.89
1.00

0.96
0.97

recall fl-score

0.97
0.97

.00

0.94

o

.95

.97
.96
.97

support

11
8
11

30
30
30

